Matematická konstanta

Matematická konstanta je číslo, které má pro výpočty zvláštní význam. Například konstanta π (vyslovuje se "koláč") znamená poměr obvodu kruhu k jeho průměru. Tato hodnota je vždy stejná pro jakoukoli kružnici. Matematická konstanta je často reálné, neintegrální číslo, které nás zajímá.

Na rozdíl od fyzikálních konstant nepocházejí matematické konstanty z fyzikálních měření.

 

Klíčové matematické konstanty

Následující tabulka obsahuje některé důležité matematické konstanty:

Název

Symbol

Hodnota

Význam

, Archimédova konstanta nebo Ludophovo číslo

π

≈3.141592653589793

Transcendentní číslo, které je poměrem délky obvodu kruhu k jeho průměru. Je to také plocha jednotkového kruhu.

E, Napierova konstanta

e

≈2.718281828459045

Transcendentní číslo, které je základem přirozených logaritmů, někdy nazývané "přirozené číslo".

Zlatý řez

φ

5 + 1 2 ≈ 1,618 {\displaystyle {\frac {{\sqrt {5}}+1}{2}}\aprox 1,618} {\displaystyle {\frac {{\sqrt {5}}+1}{2}}\approx 1.618}

Je to hodnota větší hodnoty dělená menší hodnotou, pokud se rovná hodnotě součtu hodnot dělené větší hodnotou.

Druhá odmocnina ze 2, Pythagorova konstanta

2 {\displaystyle {\sqrt {2}}} {\displaystyle {\sqrt {2}}}

≈ 1.414 {\displaystyle \aprox 1.414} {\displaystyle \approx 1.414}

Iracionální číslo, které je délkou úhlopříčky čtverce o délce strany 1. Toto číslo nelze zapsat jako zlomek.

 

Konstanty a řady

Následující tabulka obsahuje seznam konstant a řad v matematice s následujícími sloupci:

  • Hodnota: Číselná hodnota konstanty.
  • LaTeX: Vzorec nebo řada ve formátu TeX.
  • Vzorec: Pro použití v programech, jako je Mathematica nebo Wolfram Alpha.
  • OEIS: Odkaz na On-Line Encyclopedia of Integer Sequences (OEIS), kde jsou konstanty k dispozici s podrobnějšími informacemi.
  • Pokračování frakce: V jednoduchém tvaru [na celé číslo; frac1, frac2, frac3, ...] (v závorkách, pokud je periodický)
  • Typ:

Všimněte si, že seznam lze odpovídajícím způsobem seřadit kliknutím na záhlaví v horní části tabulky.

Hodnota

Název

Symbol

LaTeX

Vzorec

Typ

OEIS

Pokračující frakce

3.24697960371746706105000976800847962

Stříbro, Tutte-Beraha konstantní

ς {\displaystyle \varsigma } {\displaystyle \varsigma }

2 + 2 cos ( 2 π / 7 ) = 2 + 2 + 7 + 7 7 + 7 7 + 3 3 3 1 + 7 + 7 7 + 7 7 + 3 3 3 {\displaystyle 2+2\cos(2\pi /7)=\textstyle 2+{\frac {2+{\sqrt[{3}]{7+7{\sqrt[{3}]{7+7{\sqrt[{3}]{\,7+\cdots }}}}}}}{1+{\sqrt[{3}]{7+7{\sqrt[{3}]{7+7{\sqrt[{3}]{\,7+\cdots }}}}}}}}} {\displaystyle 2+2\cos(2\pi /7)=\textstyle 2+{\frac {2+{\sqrt[{3}]{7+7{\sqrt[{3}]{7+7{\sqrt[{3}]{\,7+\cdots }}}}}}}{1+{\sqrt[{3}]{7+7{\sqrt[{3}]{7+7{\sqrt[{3}]{\,7+\cdots }}}}}}}}}

2+2 cos(2Pi/7)

T

A116425

[3;4,20,2,3,1,6,10,5,2,2,1,2,2,1,18,1,1,3,2,...]

1.09864196439415648573466891734359621

Pařížská konstanta

C P a {\displaystyle C_{Pa}} {\displaystyle C_{Pa}}

∏ n = 2 ∞ 2 φ φ + φ n , φ = F i {\displaystyle \prod _{n=2}^{\infty }{\frac {2\varphi }{\varphi +\varphi _{n}}}\;,\varphi ={Fi}}. {\displaystyle \prod _{n=2}^{\infty }{\frac {2\varphi }{\varphi +\varphi _{n}}}\;,\varphi ={Fi}}

I

A105415

[1;10,7,3,1,3,1,5,1,4,2,7,1,2,3,22,1,2,5,2,1,...]

2.74723827493230433305746518613420282

Ramanujanův vnořený radikál R 5

R 5 {\displaystyle R_{5}} {\displaystyle R_{5}}

5 + 5 + 5 - 5 + 5 + 5 + 5 - = 2 + 5 + 15 - 6 5 2 {\displaystyle \scriptstyle {\sqrt {5+{\sqrt {5+{\sqrt {5-{\sqrt {5+{\sqrt {5+{\sqrt {5+{\sqrt {5-\cdots }}}}}}}}}}}}}}\;=\textstyle {\frac {2+{\sqrt {5}}+{\sqrt {15-6{\sqrt {5}}}}}{2}}}. {\displaystyle \scriptstyle {\sqrt {5+{\sqrt {5+{\sqrt {5-{\sqrt {5+{\sqrt {5+{\sqrt {5+{\sqrt {5-\cdots }}}}}}}}}}}}}}\;=\textstyle {\frac {2+{\sqrt {5}}+{\sqrt {15-6{\sqrt {5}}}}}{2}}}

(2+sqrt(5)+sqrt(15-6 sqrt(5)))/2

I

[2;1,2,1,21,1,7,2,1,1,2,1,2,1,17,4,4,1,1,4,2,...]

2.23606797749978969640917366873127624

Druhá odmocnina z 5, Gaussův součet

5 {\displaystyle {\sqrt {5}}} {\displaystyle {\sqrt {5}}}

n = 5 , ∑ k = 0 n - 1 e 2 k 2 π i n = 1 + e 2 π i 5 + e 8 π i 5 + e 18 π i 5 + e 32 π i 5 {\displaystyle \scriptstyle \forall \,n=5,\displaystyle \sum _{k=0}^{n-1}e^{\frac {2k^{2}\pi i}{n}}=1+e^{\frac {2\pi i}{5}}+e^{\frac {8\pi i}{5}}+e^{\frac {18\pi i}{5}}+e^{\frac {32\pi i}{5}}}. {\displaystyle \scriptstyle \forall \,n=5,\displaystyle \sum _{k=0}^{n-1}e^{\frac {2k^{2}\pi i}{n}}=1+e^{\frac {2\pi i}{5}}+e^{\frac {8\pi i}{5}}+e^{\frac {18\pi i}{5}}+e^{\frac {32\pi i}{5}}}

Součet[k=0 až 4]{e^(2k^2 pi i/5)}

I

A002163

[2;4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,...]
= [2;(4),...]

3.62560990822190831193068515586767200

Gama(1/4)

Γ ( 1 4 ) {\displaystyle \Gamma ({\tfrac {1}{4}})} {\displaystyle \Gamma ({\tfrac {1}{4}})}

4 ( 1 4 ) ! = ( - 3 4 ) ! {\displaystyle 4\left({\frac {1}{4}}}\right)!=\left(-{\frac {3}{4}}}\right)! } {\displaystyle 4\left({\frac {1}{4}}\right)!=\left(-{\frac {3}{4}}\right)!}

4(1/4)!

T

A068466

[3;1,1,1,2,25,4,9,1,1,8,4,1,6,1,1,19,1,1,4,1,...]

0.18785964246206712024851793405427323

MRB constant, Marvin Ray Burns

C M R B {\displaystyle C_{_{MRB}}} {\displaystyle C_{_{MRB}}}

∑ n = 1 ∞ ( - 1 ) n ( n 1 / n - 1 ) = - 1 1 + 2 2 - 3 3 + 4 4 ... {\displaystyle \sum _{n=1}^{\infty }({-}1)^{n}(n^{1/n}{-}1)=-{\sqrt[{1}]{1}}+{\sqrt[{2}]{2}}-{\sqrt[{3}]{3}}+{\sqrt[{4}]{4}}},\dots } {\displaystyle \sum _{n=1}^{\infty }({-}1)^{n}(n^{1/n}{-}1)=-{\sqrt[{1}]{1}}+{\sqrt[{2}]{2}}-{\sqrt[{3}]{3}}+{\sqrt[{4}]{4}}\,\dots }

Součet[n=1 až ∞]{(-1)^n (n^(1/n)-1)}

T

A037077

[0;5,3,10,1,1,4,1,1,1,1,9,1,1,12,2,17,2,2,1,...]

0.11494204485329620070104015746959874

Keplerova-Bouwkampova konstanta

ρ {\displaystyle {\rho }} {\displaystyle {\rho }}

∏ n = 3 ∞ cos ( π n ) = cos ( π 3 ) cos ( π 4 ) cos ( π 5 ) ... {\displaystyle \prod _{n=3}^{\infty }\cos \left({\frac {\pi }{n}}}\right)=\cos \left({\frac {\pi }{3}}\right)\cos \left({\frac {\pi }{4}}\right)\cos \left({\frac {\pi }{5}}\right)\dots } {\displaystyle \prod _{n=3}^{\infty }\cos \left({\frac {\pi }{n}}\right)=\cos \left({\frac {\pi }{3}}\right)\cos \left({\frac {\pi }{4}}\right)\cos \left({\frac {\pi }{5}}\right)\dots }

prod[n=3 až ∞]{cos(pi/n)}

T

A085365

[0;8,1,2,2,1,272,2,1,41,6,1,3,1,1,26,4,1,1,...]

1.78107241799019798523650410310717954

Exp(gamma)
G-Barnesova funkce

e γ {\displaystyle e^{\gamma }} {\displaystyle e^{\gamma }}

∏ n = 1 ∞ e 1 n 1 + 1 n = ∏ n = 0 ∞ ( ∏ k = 0 n ( k + 1 ) ( - 1 ) k + 1 ( n k ) ) 1 n + 1 = {\displaystyle \prod _{n=1}^{\infty }{\frac {e^{\frac {1}{n}}}{1+{\tfrac {1}{n}}}}=\prod _{n=0}^{\infty }\left(\prod _{k=0}^{n}(k+1)^{(-1)^{k+1}{n \choose k}}}\right)^{\frac {1}{n+1}}=} {\displaystyle \prod _{n=1}^{\infty }{\frac {e^{\frac {1}{n}}}{1+{\tfrac {1}{n}}}}=\prod _{n=0}^{\infty }\left(\prod _{k=0}^{n}(k+1)^{(-1)^{k+1}{n \choose k}}\right)^{\frac {1}{n+1}}=}

( 2 1 ) 1 / 2 ( 2 2 1 3 ) 1 / 3 ( 2 3 4 1 3 3 ) 1 / 4 ( 2 4 4 4 1 3 6 5 ) 1 / 5 ... {\displaystyle \textstyle \left({\frac {2}{1}}}\right)^{1/2}\left({\frac {2^{2}}{1\cdot 3}}}\right)^{1/3}\left({\frac {2^{3}\cdot 4}{1\cdot 3^{3}}}pravá)^{1/4}\levá({\frac {2^{4}\cdot 4^{4}}{1\cdot 3^{6}\cdot 5}}}pravá)^{1/5}\dots } {\displaystyle \textstyle \left({\frac {2}{1}}\right)^{1/2}\left({\frac {2^{2}}{1\cdot 3}}\right)^{1/3}\left({\frac {2^{3}\cdot 4}{1\cdot 3^{3}}}\right)^{1/4}\left({\frac {2^{4}\cdot 4^{4}}{1\cdot 3^{6}\cdot 5}}\right)^{1/5}\dots }

Prod[n=1 až ∞]{e^(1/n)}/{1 + 1/n}

T

A073004

[1;1,3,1,1,3,5,4,1,1,2,2,1,7,9,1,16,1,1,1,2,...]

1.28242712910062263687534256886979172

Glaisher-Kinkelinova konstanta

A {\displaystyle {A}} {\displaystyle {A}}

e 1 12 - ζ ′ ( - 1 ) = e 1 8 - 1 2 ∑ n = 0 ∞ 1 n + 1 ∑ k = 0 n ( - 1 ) k ( n k ) ( k + 1 ) 2 ln ( k + 1 ) {\displaystyle e^{{\frac {1}{12}}-\zeta ^{\prime }(-)1)}=e^{{\frac {1}{8}}-{\frac {1}{2}}\součet \limits _{n=0}^{\infty }{\frac {1}{n+1}}\součet \limits _{k=0}^{n}\left(-1\right)^{k}{\binom {n}{k}}\left(k+1\right)^{2}\ln(k+1)}}} {\displaystyle e^{{\frac {1}{12}}-\zeta ^{\prime }(-1)}=e^{{\frac {1}{8}}-{\frac {1}{2}}\sum \limits _{n=0}^{\infty }{\frac {1}{n+1}}\sum \limits _{k=0}^{n}\left(-1\right)^{k}{\binom {n}{k}}\left(k+1\right)^{2}\ln(k+1)}}

e^(1/2-zeta´{-1})

T

A074962

[1;3,1,1,5,1,1,1,3,12,4,1,271,1,1,2,7,1,35,...]

7.38905609893065022723042746057500781

Schwarzschildova kuželová konstanta

e 2 {\displaystyle e^{2}} {\displaystyle e^{2}}

∑ n = 0 ∞ 2 n n ! = 1 + 2 + 2 2 2 ! + 2 3 3 ! + 2 4 4 ! + 2 5 5 ! + ... {\displaystyle \sum _{n=0}^{\infty }{\frac {2^{n}}{n!}}=1+2+{\frac {2^{2}}{2!}}+{\frac {2^{3}}{3!}}+{\frac {2^{4}}{4!}}+{\frac {2^{5}}{5!}}+\dots } {\displaystyle \sum _{n=0}^{\infty }{\frac {2^{n}}{n!}}=1+2+{\frac {2^{2}}{2!}}+{\frac {2^{3}}{3!}}+{\frac {2^{4}}{4!}}+{\frac {2^{5}}{5!}}+\dots }

Součet[n=0 až ∞]{2^n/n!}

T

A072334

[7;2,1,1,3,18,5,1,1,6,30,8,1,1,9,42,11,1,...]
= [7,2,(1,1,n,4*n+6,n+2)], n = 3, 6, 9 atd.

1.01494160640965362502120255427452028

Gieseking konstanta

G G i {\displaystyle {G_{Gi}}} {\displaystyle {G_{Gi}}}

3 3 4 ( 1 - ∑ n = 0 ∞ 1 ( 3 n + 2 ) 2 + ∑ n = 1 ∞ 1 ( 3 n + 1 ) 2 ) = {\displaystyle {\frac {3{\sqrt {3}}}{4}}\left(1-\součet _{n=0}^{\infty }{\frac {1}{(3n+2)^{2}}}+\součet _{n=1}^{\infty }{\frac {1}{(3n+1)^{2}}}}\pravo)=} {\displaystyle {\frac {3{\sqrt {3}}}{4}}\left(1-\sum _{n=0}^{\infty }{\frac {1}{(3n+2)^{2}}}+\sum _{n=1}^{\infty }{\frac {1}{(3n+1)^{2}}}\right)=}

3 3 4 ( 1 - 1 2 2 + 1 4 2 - 1 5 2 + 1 7 2 - 1 8 2 + 1 10 2 ± ... ) {\displaystyle \textstyle {\frac {3{\sqrt {3}}}{4}}\left(1-{\frac {1}{2^{2}}}+{\frac {1}{4^{2}}}-{\frac {1}{5^{2}}}}+{\frac {1}{7^{2}}}-{\frac {1}{8^{2}}}+{\frac {1}{10^{2}}}\pm \dots \right)}{\displaystyle \textstyle {\frac {3{\sqrt {3}}}{4}}\left(1-{\frac {1}{2^{2}}}+{\frac {1}{4^{2}}}-{\frac {1}{5^{2}}}+{\frac {1}{7^{2}}}-{\frac {1}{8^{2}}}+{\frac {1}{10^{2}}}\pm \dots \right)} .

T

A143298

[1;66,1,12,1,2,1,4,2,1,3,3,1,4,1,56,2,2,11,...]

2.62205755429211981046483958989111941

Lemniscata konstantní

ϖ {\displaystyle {\varpi }} {\displaystyle {\varpi }}

π G = 4 2 π ( 1 4 ! ) 2 {\displaystyle \pi \,{G}=4{\sqrt {\tfrac {2}{\pi }}},({\tfrac {1}{4}}}!)^{2}}} {\displaystyle \pi \,{G}=4{\sqrt {\tfrac {2}{\pi }}}\,({\tfrac {1}{4}}!)^{2}}

4 sqrt(2/pi) (1/4!)^2

T

A062539

[2;1,1,1,1,1,4,1,2,5,1,1,1,14,9,2,6,2,9,4,1,...]

0.83462684167407318628142973279904680

Gaussova konstanta

G {\displaystyle {G}} {\displaystyle {G}}

1 a g m ( 1 , 2 ) = 4 2 ( 1 4 ! ) 2 π 3 / 2 A g m : A r i t h m e t i c - g e o m e t r i c k ý m e n {\displaystyle {\underset {Agm:\;Aritmeticko-geometrický\;mean}{{\frac {1}{\mathrm {agm} (1,{\sqrt {2}})}}={\frac {4{\sqrt {2}},({\tfrac {1}{4}}!)^{2}}{\pi ^{3/2}}}}}} {\displaystyle {\underset {Agm:\;Arithmetic-geometric\;mean}{{\frac {1}{\mathrm {agm} (1,{\sqrt {2}})}}={\frac {4{\sqrt {2}}\,({\tfrac {1}{4}}!)^{2}}{\pi ^{3/2}}}}}}

(4 sqrt(2)(1/4!)^2)/pi^(3/2)

T

A014549

[0;1,5,21,3,4,14,1,1,1,1,1,3,1,15,1,3,7,1,...]

1.01734306198444913971451792979092052

Zeta(6)

ζ ( 6 ) {\displaystyle \zeta (6)} {\displaystyle \zeta (6)}

π 6 945 = ∏ n = 1 ∞ 1 1 - p n - 6 p n : p r i m o = 1 1 - 2 - 6 1 1 - 3 - 6 1 1 - 5 - 6 . . . {\displaystyle {\frac {\pi ^{6}}{945}}=\prod _{n=1}^{\infty }{\underset {p_{n}:\,{primo}}{\frac {1}{{1-p_{n}}^{-6}}}}={\frac {1}{1{-}2^{-6}}}{\cdot }{\frac {1}{1{-}3^{-6}}}{\cdot }{\frac {1}{1{-}5^{-6}}}... } {\displaystyle {\frac {\pi ^{6}}{945}}=\prod _{n=1}^{\infty }{\underset {p_{n}:\,{primo}}{\frac {1}{{1-p_{n}}^{-6}}}}={\frac {1}{1{-}2^{-6}}}{\cdot }{\frac {1}{1{-}3^{-6}}}{\cdot }{\frac {1}{1{-}5^{-6}}}...}

Prod[n=1 až ∞] {1/(1-ithprime(n)^-6)}

T

A013664

[1;57,1,1,1,15,1,6,3,61,1,5,3,1,6,1,3,3,6,1,...]

0,60792710185402662866327677925836583

Constante de Hafner-Sarnak-McCurley

1 ζ ( 2 ) {\displaystyle {\frac {1}{\zeta (2)}}} {\displaystyle {\frac {1}{\zeta (2)}}}

6 π 2 = ∏ n = 0 ∞ ( 1 - 1 p n 2 ) p n : p r i m o = ( 1 - 1 2 2 ) ( 1 - 1 3 2 ) ( 1 - 1 5 2 ) ... {\displaystyle {\frac {6}{\pi ^{2}}}{=}\prod _{n=0}^{\infty }{\underset {p_{n}:\,{primo}}{\left(1-{\frac {1}{{p_{n}}^{2}}}}\right)}}{=}\textstyle \left(1{-}{\frac {1}{2^{2}}}}\right)\left(1{-}{\frac {1}{3^{2}}}}\right)\left(1{-}{\frac {1}{5^{2}}}}\right)\dots } {\displaystyle {\frac {6}{\pi ^{2}}}{=}\prod _{n=0}^{\infty }{\underset {p_{n}:\,{primo}}{\left(1-{\frac {1}{{p_{n}}^{2}}}\right)}}{=}\textstyle \left(1{-}{\frac {1}{2^{2}}}\right)\left(1{-}{\frac {1}{3^{2}}}\right)\left(1{-}{\frac {1}{5^{2}}}\right)\dots }

Prod{n=1 až ∞} (1-1/ithprime(n)^2)

T

A059956

[0;1,1,1,1,4,2,4,7,1,4,2,3,4,10,1,2,1,1,1,...]

1.11072073453959156175397024751517342

Poměr čtverce a kružnice vepsané nebo vepsané do kružnice

π 2 2 {\displaystyle {\frac {\pi }{2{\sqrt {2}}}}} {\displaystyle {\frac {\pi }{2{\sqrt {2}}}}}

∑ n = 1 ∞ ( - 1 ) n - 1 2 2 n + 1 = 1 1 + 1 3 - 1 5 - 1 7 + 1 9 + 1 11 - ... {\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{\lfloor {\frac {n-1}{2}}}\rfloor }}{2n+1}}={\frac {1}{1}}+{\frac {1}{3}}-{\frac {1}{5}}-{\frac {1}{7}}+{\frac {1}{9}}+{\frac {1}{11}}-\dots } {\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{\lfloor {\frac {n-1}{2}}\rfloor }}{2n+1}}={\frac {1}{1}}+{\frac {1}{3}}-{\frac {1}{5}}-{\frac {1}{7}}+{\frac {1}{9}}+{\frac {1}{11}}-\dots }

sum[n=1 až ∞]{(-1)^(floor((n-1)/2))/(2n-1)}

T

A093954

[1;9,31,1,1,17,2,3,3,2,3,1,1,2,2,1,4,9,1,3,...]

2.80777024202851936522150118655777293

Fransén-Robinson konstanta

F {\displaystyle {F}} {\displaystyle {F}}

∫ 0 ∞ 1 Γ ( x ) d x . = e + ∫ 0 ∞ e - x π 2 + ln 2 x d x {\displaystyle \int _{0}^{\infty }{\frac {1}{\Gamma (x)}}\,dx.=e+\int _{0}^{\infty }{\frac {e^{-x}}{\pi ^{2}+\ln ^{2}x}}\,dx} {\displaystyle \int _{0}^{\infty }{\frac {1}{\Gamma (x)}}\,dx.=e+\int _{0}^{\infty }{\frac {e^{-x}}{\pi ^{2}+\ln ^{2}x}}\,dx}

N[int[0 až ∞] {1/Gamma(x)}]

T

A058655

[2;1,4,4,1,18,5,1,3,4,1,5,3,6,1,1,1,5,1,1,1...]

1.64872127070012814684865078781416357

Odmocnina z čísla e

e {\displaystyle {\sqrt {e}}} {\displaystyle {\sqrt {e}}}

∑ n = 0 ∞ 1 2 n n ! = ∑ n = 0 ∞ 1 ( 2 n ) ! ! = 1 1 + 1 2 + 1 8 + 1 48 + {\displaystyle \sum _{n=0}^{\infty }{\frac {1}{2^{n}n!}}=\sum _{n=0}^{\infty }{\frac {1}{(2n)!!}}={\frac {1}{1}}+{\frac {1}{2}}+{\frac {1}{8}}+{\frac {1}{48}}+\cdots } {\displaystyle \sum _{n=0}^{\infty }{\frac {1}{2^{n}n!}}=\sum _{n=0}^{\infty }{\frac {1}{(2n)!!}}={\frac {1}{1}}+{\frac {1}{2}}+{\frac {1}{8}}+{\frac {1}{48}}+\cdots }

sum[n=0 až ∞]{1/(2^n n!)}

T

A019774

[1;1,1,1,5,1,1,9,1,1,13,1,1,17,1,1,21,1,1,...]
= [1;1,(1,1,4p+1)], p∈ℕ

i

Imaginární číslo

i {\displaystyle {i}} {\displaystyle {i}}

- 1 = ln ( - 1 ) π e i π = - 1 {\displaystyle {\sqrt {-1}}={\frac {\ln(-1)}{\pi }}\qquad \qquad \mathrm {e} ^{i\,\pi }=-1} {\displaystyle {\sqrt {-1}}={\frac {\ln(-1)}{\pi }}\qquad \qquad \mathrm {e} ^{i\,\pi }=-1}

sqrt(-1)

C

262537412640768743.999999999999250073

Hermitova-Ramanujanova konstanta

R {\displaystyle {R}} {\displaystyle {R}}

e π 163 {\displaystyle e^{\pi {\sqrt {163}}}} {\displaystyle e^{\pi {\sqrt {163}}}}

e^(π sqrt(163))

T

A060295

[262537412640768743;1,1333462407511,1,8,1,1,5,...]

4.81047738096535165547303566670383313

John constant

γ {\displaystyle \gamma } {\displaystyle \gamma }

i i = i - i = i 1 i = ( i i ) - 1 = e π 2 {\displaystyle {\sqrt[{i}]{i}}=i^{-i}=i^{\frac {1}{i}}=(i^{i})^{-1}=e^{\frac {\pi }{2}}}} {\displaystyle {\sqrt[{i}]{i}}=i^{-i}=i^{\frac {1}{i}}=(i^{i})^{-1}=e^{\frac {\pi }{2}}}

e^(π/2)

T

A042972

[4;1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,3,...]

4.53236014182719380962768294571666681

Constante de Van der Pauw

α {\displaystyle \alpha } {\displaystyle \alpha }

π l n ( 2 ) = ∑ n = 0 ∞ 4 ( - 1 ) n 2 n + 1 ∑ n = 1 ∞ ( - 1 ) n + 1 n = 4 1 - 4 3 + 4 5 - 4 7 + 4 9 - ... 1 1 - 1 2 + 1 3 - 1 4 + 1 5 - ... {\displaystyle {\frac {\pi }{ln(2)}}={\frac {\součet _{n=0}^{\infty }{\frac {4(-1)^{n}}{2n+1}}}{\součet _{n=1}^{{\infty }{\frac {(-1)^{n+1}}{n}}}}={\frac {{\frac {4}{1}}{-}{\frac {4}{3}}{+}{\frac {4}{5}}{-}{\frac {4}{7}}{+}{\frac {4}{9}}-\bodů }{{\frac {1}{1}}{-}{\frac {1}{2}}{+}{\frac {1}{3}}{-}{\frac {1}{4}}{+}{\frac {1}{5}}-\bodů }}}. {\displaystyle {\frac {\pi }{ln(2)}}={\frac {\sum _{n=0}^{\infty }{\frac {4(-1)^{n}}{2n+1}}}{\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}}}={\frac {{\frac {4}{1}}{-}{\frac {4}{3}}{+}{\frac {4}{5}}{-}{\frac {4}{7}}{+}{\frac {4}{9}}-\dots }{{\frac {1}{1}}{-}{\frac {1}{2}}{+}{\frac {1}{3}}{-}{\frac {1}{4}}{+}{\frac {1}{5}}-\dots }}}

π/ln(2)

T

A163973

[4;1,1,7,4,2,3,3,1,4,1,1,4,7,2,3,3,12,2,1,...]

0.76159415595576488811945828260479359

Hyperbolický tangens (1)

t h 1 {\displaystyle th\,1} {\displaystyle th\,1}

e - 1 e e + 1 e = e 2 - 1 e 2 + 1 {\displaystyle {\frac {e-{\frac {1}{e}}}{e+{{\frac {1}{e}}}}={\frac {e^{2}-1}{e^{2}+1}}}) {\displaystyle {\frac {e-{\frac {1}{e}}}{e+{\frac {1}{e}}}}={\frac {e^{2}-1}{e^{2}+1}}}

(e-1/e)/(e+1/e)

T

A073744

[0;1,3,5,7,9,11,13,15,17,19,21,23,25,27,...]
= [0;(2p+1)], p∈ℕ

0.69777465796400798200679059255175260

Konstanta pokračující frakce

C C F {\displaystyle {C}_{CF}} {\displaystyle {C}_{CF}}

J 1 ( 2 ) J 0 ( 2 ) F u n k c e J k ( ) B e s e l = ∑ n = 0 ∞ n n ! n ! ∑ n = 0 ∞ 1 n ! n ! = 0 1 + 1 1 + 2 4 + 3 36 + 4 576 + ... 1 1 + 1 1 + 1 4 + 1 36 + 1 576 + ... {\displaystyle {\underset {J_{k}(){Bessel}}{\underset {Funkce}{\frac {J_{1}(2)}{J_{0}(2)}}}}={\frac {\sum \limits _{n=0}^{\infty }{\frac {n}{n!n!}}}{\sum \limits _{n=0}^{\infty }{\frac {1}{n!n!}}}}={{\frac {{\frac {0}{1}}+{\frac {1}{1}}+{\frac {2}{4}}+{\frac {3}{36}}+{\frac {4}{576}}+{\dots }{{\frac {1}{1}}+{\frac {1}{1}}+{\frac {1}{4}}+{\frac {1}{36}}+{\frac {1}{576}}}+{\dots }}}} {\displaystyle {\underset {J_{k}(){Bessel}}{\underset {Function}{\frac {J_{1}(2)}{J_{0}(2)}}}}={\frac {\sum \limits _{n=0}^{\infty }{\frac {n}{n!n!}}}{\sum \limits _{n=0}^{\infty }{\frac {1}{n!n!}}}}={\frac {{\frac {0}{1}}+{\frac {1}{1}}+{\frac {2}{4}}+{\frac {3}{36}}+{\frac {4}{576}}+\dots }{{\frac {1}{1}}+{\frac {1}{1}}+{\frac {1}{4}}+{\frac {1}{36}}+{\frac {1}{576}}+\dots }}}

(součet {n=0 až inf} n/(n!n!)) /(součet {n=0 až inf} 1/(n!n!))

A052119

[0;1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,...]
= [0;(p+1)], p∈ℕ

0.36787944117144232159552377016146086

Inverzní Napierova konstanta

1 e {\displaystyle {\frac {1}{e}}} {\displaystyle {\frac {1}{e}}}

∑ n = 0 ∞ ( - 1 ) n n ! = 1 0 ! - 1 1 ! + 1 2 ! - 1 3 ! + 1 4 ! - 1 5 ! + ... {\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{n!}}={\frac {1}{0!}}-{\frac {1}{1!}}+{\frac {1}{2!}}-{\frac {1}{3!}}+{\frac {1}{4!}}-{\frac {1}{5!}}+\dots } {\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{n!}}={\frac {1}{0!}}-{\frac {1}{1!}}+{\frac {1}{2!}}-{\frac {1}{3!}}+{\frac {1}{4!}}-{\frac {1}{5!}}+\dots }

sum[n=2 až ∞]{(-1)^n/n!}

T

A068985

[0;2,1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,...]
= [0;2,1,(1,2p,1)], p∈ℕ

2.71828182845904523536028747135266250

Napierova konstanta

e {\displaystyle e} {\displaystyle e}

∑ n = 0 ∞ 1 n ! = 1 0 ! + 1 1 + 1 2 ! + 1 3 ! + 1 4 ! + 1 5 ! + {\displaystyle \sum _{n=0}^{\infty }{\frac {1}{n!}}={\frac {1}{0!}}+{\frac {1}{1}}+{\frac {1}{2!}}+{\frac {1}{3!}}+{\frac {1}{4!}}+{\frac {1}{5!}}+\cdots } {\displaystyle \sum _{n=0}^{\infty }{\frac {1}{n!}}={\frac {1}{0!}}+{\frac {1}{1}}+{\frac {1}{2!}}+{\frac {1}{3!}}+{\frac {1}{4!}}+{\frac {1}{5!}}+\cdots }

Součet[n=0 až ∞]{1/n!}

T

A001113

[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,...]
= [2;(1,2p,1)], p∈ℕ

0.49801566811835604271369111746219809
- 0.15494982830181068512495513048388 i

Faktoriál i

i ! {\displaystyle i\,! } {\displaystyle i\,!}

Γ ( 1 + i ) = i Γ ( i ) {\displaystyle \Gamma (1+i)=i\,\Gamma (i)} {\displaystyle \Gamma (1+i)=i\,\Gamma (i)}

Gamma(1+i)

C

A212877
A212878

[0;6,2,4,1,8,1,46,2,2,3,5,1,10,7,5,1,7,2,...]
- [0;2,125,2,18,1,2,1,1,19,1,1,1,2,3,34,...] i

0.43828293672703211162697516355126482
+ 0.36059247187138548595294052690600 i

Nekonečný
Tetrace i

∞ i {\displaystyle {}^{\infty }i} {\displaystyle {}^{\infty }i}

lim n → ∞ n i = lim n → ∞ i ⋅ ⋅ i n {\displaystyle \lim _{n\to \infty }{}^{n}i=\lim _{n\to \infty }\podtrženo {i^{i^{\cdot ^{\cdot ^{i}}}}} _{n}} {\displaystyle \lim _{n\to \infty }{}^{n}i=\lim _{n\to \infty }\underbrace {i^{i^{\cdot ^{\cdot ^{i}}}}} _{n}}

i^i^i^...

C

A077589
A077590

[0;2,3,1,1,4,2,2,1,10,2,1,3,1,8,2,1,2,1, ...]
+ [0;2,1,3,2,2,3,1,5,5,1,2,1,10,10,6,1,1...] i

0.56755516330695782538461314419245334

Modul
Infinite
Tetrace i

| ∞ i | {\displaystyle |{}^{\infty }i|} {\displaystyle |{}^{\infty }i|}

lim n → ∞ | n i | = | lim n → ∞ i i ⋅ ⋅ i n | {\displaystyle \lim _{n\to \infty }\left|{}^{n}i\right|=\left|\lim _{n\to \infty }\underbrace {i^{i^{\cdot ^{\cdot ^{i}}}}} _{n}\vpravo|} {\displaystyle \lim _{n\to \infty }\left|{}^{n}i\right|=\left|\lim _{n\to \infty }\underbrace {i^{i^{\cdot ^{\cdot ^{i}}}}} _{n}\right|}

Mod(i^i^i^...)

A212479

[0;1,1,3,4,1,58,12,1,51,1,4,12,1,1,2,2,3,...]

0.26149721284764278375542683860869585

Meissel-Mertensova konstanta

M {\displaystyle M} {\displaystyle M}

lim n → ∞ ( ∑ p ≤ n 1 p - ln ( ln ( n ) ) ) {\displaystyle \lim _{n\rightarrow \infty }\left(\sum _{p\leq n}{\frac {1}{p}}-\ln(\ln(n))\right)}{\displaystyle \lim _{n\rightarrow \infty }\left(\sum _{p\leq n}{\frac {1}{p}}-\ln(\ln(n))\right)} ..... p: prvočísla

A077761

[0;3,1,4,1,2,5,2,1,1,1,1,13,4,2,4,2,1,33,...]

1.9287800...

Wrightova konstanta

ω {\displaystyle \omega } {\displaystyle \omega }

⌊ 2 2 2 ⋅ ⋅ 2 ω {\displaystyle \left\lfloor 2^{2^{2^{\cdot ^{\cdot ^{2^{\omega }}}}}}\right\rfloor }{\displaystyle \left\lfloor 2^{2^{2^{\cdot ^{\cdot ^{2^{\omega }}}}}}\right\rfloor } = primos: {\displaystyle \quad } {\displaystyle \quad }⌊ 2 ω {\displaystyle \left\lfloor 2^{\omega }\right\rfloor }{\displaystyle \left\lfloor 2^{\omega }\right\rfloor } =3, 2 2 ω {\displaystyle \left\lfloor 2^{2^{\omega }}\right\rfloor }{\displaystyle \left\lfloor 2^{2^{\omega }}\right\rfloor } =13, ⌊ 2 2 2 ω {\displaystyle \left\lfloor 2^{2^{2^{\omega }}}\right\rfloor }{\displaystyle \left\lfloor 2^{2^{2^{\omega }}}\right\rfloor } =16381, ... {\displaystyle \bodky } {\displaystyle \dots }

A086238

[1; 1, 13, 24, 2, 1, 1, 3, 1, 1, 3]

0.37395581361920228805472805434641641

Artin konstantní

C A r t i n {\displaystyle C_{Artin}} {\displaystyle C_{Artin}}

∏ n = 1 ∞ ( 1 - 1 p n ( p n - 1 ) ) {\displaystyle \prod _{n=1}^{\infty }\left(1-{\frac {1}{p_{n}(p_{n}-1)}}\right)}{\displaystyle \prod _{n=1}^{\infty }\left(1-{\frac {1}{p_{n}(p_{n}-1)}}\right)} ...... pn : primo

T

A005596

[0;2,1,2,14,1,1,2,3,5,1,3,1,5,1,1,2,3,5,46,...]

4.66920160910299067185320382046620161

Feigenbaumova konstanta δ

δ {\displaystyle {\delta }} {\displaystyle {\delta }}

lim n → ∞ x n + 1 - x n x n + 2 - x n + 1 x ( 3 , 8284 ; 3 , 8495 ) {\displaystyle \lim _{n\to \infty }{\frac {x_{n+1}-x_{n}}{x_{n+2}-x_{n+1}}}\qquad \scriptstyle x\in (3,8284;\,3,8495)} {\displaystyle \lim _{n\to \infty }{\frac {x_{n+1}-x_{n}}{x_{n+2}-x_{n+1}}}\qquad \scriptstyle x\in (3,8284;\,3,8495)}

x n + 1 = a x n ( 1 - x n ) o x n + 1 = a sin ( x n ) {\displaystyle \scriptstyle x_{n+1}=\,ax_{n}(1-x_{n})\quad {o}\quad x_{n+1}=\,a\sin(x_{n})} {\displaystyle \scriptstyle x_{n+1}=\,ax_{n}(1-x_{n})\quad {o}\quad x_{n+1}=\,a\sin(x_{n})}

T

A006890

[4;1,2,43,2,163,2,3,1,1,2,5,1,2,3,80,2,5,...]

2.50290787509589282228390287321821578

Feigenbaumova konstanta α

α {\displaystyle \alpha } {\displaystyle \alpha }

lim n → ∞ d n d n + 1 {\displaystyle \lim _{n\to \infty }{\frac {d_{n}}{d_{n+1}}}} {\displaystyle \lim _{n\to \infty }{\frac {d_{n}}{d_{n+1}}}}

T

A006891

[2;1,1,85,2,8,1,10,16,3,8,9,2,1,40,1,2,3,...]

5.97798681217834912266905331933922774

Šestihranná konstanta Madelung 2

H 2 ( 2 ) {\displaystyle H_{2}(2)} {\displaystyle H_{2}(2)}

π ln ( 3 ) 3 {\displaystyle \pi \ln(3){\sqrt {3}}} {\displaystyle \pi \ln(3){\sqrt {3}}}

Pi Log[3]Sqrt[3]

T

A086055

[5;1,44,2,2,1,15,1,1,12,1,65,11,1,3,1,1,...]

0.96894614625936938048363484584691860

Beta(3)

β ( 3 ) {\displaystyle \beta (3)} {\displaystyle \beta (3)}

π 3 32 = ∑ n = 1 ∞ - 1 n + 1 ( - 1 + 2 n ) 3 = 1 1 3 - 1 3 3 + 1 5 3 - 1 7 3 + ... {\displaystyle {\frac {\pi ^{3}}{32}}=\sum _{n=1}^{\infty }{\frac {-1^{n+1}}{(-1+2n)^{3}}}={\frac {1}{1^{3}}}{-}{\frac {1}{3^{3}}}{+}{\frac {1}{5^{3}}}{-}{\frac {1}{7^{3}}}{+}\dots } {\displaystyle {\frac {\pi ^{3}}{32}}=\sum _{n=1}^{\infty }{\frac {-1^{n+1}}{(-1+2n)^{3}}}={\frac {1}{1^{3}}}{-}{\frac {1}{3^{3}}}{+}{\frac {1}{5^{3}}}{-}{\frac {1}{7^{3}}}{+}\dots }

Součet[n=1 až ∞]{(-1)^(n+1)/(-1+2n)^3}

T

A153071

[0;1,31,4,1,18,21,1,1,2,1,2,1,3,6,3,28,1,...]

1.902160583104

Brunova konstanta2 = Σ inverzní dvojčata

B 2 {\displaystyle B_{\,2}} {\displaystyle B_{\,2}}

∑ ( 1 p + 1 p + 2 ) p , p + 2 : p r i m o s = ( 1 3 + 1 5 ) + ( 1 5 + 1 7 ) + ( 1 11 + 1 13 ) + ... {\displaystyle \textstyle \sum {\underset {p,\,p+2:\,{primos}}{({\frac {1}{p}}+{\frac {1}{p+2}})}}=({\frac {1}{3}}{+}{\frac {1}{5}})+({\tfrac {1}{5}}{+}{\tfrac {1}{7}})+({\tfrac {1}{11}}{+}{\tfrac {1}{13}})+\dots } {\displaystyle \textstyle \sum {\underset {p,\,p+2:\,{primos}}{({\frac {1}{p}}+{\frac {1}{p+2}})}}=({\frac {1}{3}}{+}{\frac {1}{5}})+({\tfrac {1}{5}}{+}{\tfrac {1}{7}})+({\tfrac {1}{11}}{+}{\tfrac {1}{13}})+\dots }

A065421

[1; 1, 9, 4, 1, 1, 8, 3, 4, 4, 2, 2]

0.870588379975

Brunova konstanta4 = Σ inverzní číslo dvojčete.

B 4 {\displaystyle B_{\,4}} {\displaystyle B_{\,4}}

( 1 5 + 1 7 + 1 11 + 1 13 ) p , p + 2 , p + 4 , p + 6 : p r i m e s + ( 1 11 + 1 13 + 1 17 + 1 19 ) + ... {\displaystyle {\underset {p,\,p+2,\,p+4,\,p+6:\,{primes}}{\left({\tfrac {1}{5}}+{\tfrac {1}{7}}+{\tfrac {1}{11}}+{\tfrac {1}{13}}\right)}}+\left({\tfrac {1}{11}}+{\tfrac {1}{13}}+{\tfrac {1}{17}}+{\tfrac {1}{19}}\right)+\dots } {\displaystyle {\underset {p,\,p+2,\,p+4,\,p+6:\,{primes}}{\left({\tfrac {1}{5}}+{\tfrac {1}{7}}+{\tfrac {1}{11}}+{\tfrac {1}{13}}\right)}}+\left({\tfrac {1}{11}}+{\tfrac {1}{13}}+{\tfrac {1}{17}}+{\tfrac {1}{19}}\right)+\dots }

A213007

[0; 1, 6, 1, 2, 1, 2, 956, 3, 1, 1]

22.4591577183610454734271522045437350

pi^e

π e {\displaystyle \pi ^{e}} {\displaystyle \pi ^{e}}

π e {\displaystyle \pi ^{e}} {\displaystyle \pi ^{e}}

pi^e

A059850

[22;2,5,1,1,1,1,1,3,2,1,1,3,9,15,25,1,1,5,...]

3.14159265358979323846264338327950288

, Archimédova konstanta

π {\displaystyle \pi } {\displaystyle \pi }

lim n → ∞ 2 n 2 - 2 + 2 + + 2 n {\displaystyle \lim _{n\to \infty }\,2^{n}\podle {\sqrt {2-{\sqrt {2+{\sqrt {2+\dots +{\sqrt {2}}}}}}}} _{n}} {\displaystyle \lim _{n\to \infty }\,2^{n}\underbrace {\sqrt {2-{\sqrt {2+{\sqrt {2+\dots +{\sqrt {2}}}}}}}} _{n}}

Součet[n=0 až ∞]{(-1)^n 4/(2n+1)}

T

A000796

[3;7,15,1,292,1,1,1,2,1,3,1,14,...]

0.06598803584531253707679018759684642

e - e {\displaystyle e^{-e}} {\displaystyle e^{-e}}

e - e {\displaystyle e^{-e}} {\displaystyle e^{-e}}... Dolní mez tetrace

T

A073230

[0;15,6,2,13,1,3,6,2,1,1,5,1,1,1,9,4,1,1,1,...]

0.20787957635076190854695561983497877

i^i

i i {\displaystyle i^{i}} {\displaystyle i^{i}}

e - π 2 {\displaystyle e^{\frac {-\pi }{2}}} {\displaystyle e^{\frac {-\pi }{2}}}

e^(-pi/2)

T

A049006

[0;4,1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,...]

0.28016949902386913303643649123067200

Bernsteinova konstanta

β {\displaystyle \beta } {\displaystyle \beta }

1 2 π {\displaystyle {\frac {1}{2{\sqrt {\pi }}}}} {\displaystyle {\frac {1}{2{\sqrt {\pi }}}}}

T

A073001

[0;3,1,1,3,9,6,3,1,3,13,1,16,3,3,4,…]

0.28878809508660242127889972192923078

Flajolet a Richmond

Q {\displaystyle Q} Q

∏ n = 1 ∞ ( 1 - 1 2 n ) = ( 1 - 1 2 1 ) ( 1 - 1 2 2 ) ( 1 - 1 2 3 ) ... {\displaystyle \prod _{n=1}^{\infty }\levá(1-{\frac {1}{2^{n}}}}pravá)=\levá(1{-}{\frac {1}{2^{1}}}}pravá)\levá(1{-}{\frac {1}{2^{2}}}}pravá)\levá(1{-}{\frac {1}{2^{3}}}}pravá)\dots } {\displaystyle \prod _{n=1}^{\infty }\left(1-{\frac {1}{2^{n}}}\right)=\left(1{-}{\frac {1}{2^{1}}}\right)\left(1{-}{\frac {1}{2^{2}}}\right)\left(1{-}{\frac {1}{2^{3}}}\right)\dots }

prod[n=1 až ∞]{1-1/2^n}

A048651

0.31830988618379067153776752674502872

Inverzní hodnota čísla , Ramanujan

1 π {\displaystyle {\frac {1}{\pi }}} {\displaystyle {\frac {1}{\pi }}}

2 2 9801 ∑ n = 0 ∞ ( 4 n ) ! ( 1103 + 26390 n ) ( n ! ) 4 396 4 n {\displaystyle {\frac {2{\sqrt {2}}}{9801}}\sum _{n=0}^{\infty }{\frac {(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}}} {\displaystyle {\frac {2{\sqrt {2}}}{9801}}\sum _{n=0}^{\infty }{\frac {(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}}}

T

A049541

[0;3,7,15,292,1,1,1,2,1,3,1,14,2,1,1,...]

0.47494937998792065033250463632798297

Weierstraß konstanta

W W E {\displaystyle W_{_{WE}}} {\displaystyle W_{_{WE}}}

e π 8 π 4 2 3 / 4 ( 1 4 ! ) 2 {\displaystyle {\frac {e^{\frac {\pi }{8}}{\sqrt {\pi }}}{4*2^{3/4}{({\frac {1}{4}}!)^{2}}}}} {\displaystyle {\frac {e^{\frac {\pi }{8}}{\sqrt {\pi }}}{4*2^{3/4}{({\frac {1}{4}}!)^{2}}}}}

(E^(Pi/8) Sqrt[Pi])/(4 2^(3/4) (1/4)!^2)

T

A094692

[0;2,9,2,11,1,6,1,4,6,3,19,9,217,1,2,...]

0.56714329040978387299996866221035555

Konstanta Omega

Ω {\displaystyle \Omega } {\displaystyle \Omega }

W ( 1 ) = ∑ n = 1 ∞ ( - n ) n - 1 n ! = 1 - 1 + 3 2 - 8 3 + 125 24 - ... {\displaystyle W(1)=\sum _{n=1}^{\infty }{\frac {(-n)^{n-1}}{n!}}=1{-}1{+}{\frac {3}{2}}{-}{\frac {8}{3}}{+}{\frac {125}{24}}-\dots } {\displaystyle W(1)=\sum _{n=1}^{\infty }{\frac {(-n)^{n-1}}{n!}}=1{-}1{+}{\frac {3}{2}}{-}{\frac {8}{3}}{+}{\frac {125}{24}}-\dots }

sum[n=1 až ∞]{(-n)^(n-1)/n!}

T

A030178

[0;1,1,3,4,2,10,4,1,1,1,1,2,7,306,1,5,1,...]

0.57721566490153286060651209008240243

Eulerovo číslo

γ {\displaystyle \gamma } {\displaystyle \gamma }

- ψ ( 1 ) = ∑ n = 1 ∞ ∑ k = 0 ∞ ( - 1 ) k 2 n + k {\displaystyle -\psi (1)=\sum _{n=1}^{\infty }\sum _{k=0}^{\infty }{\frac {(-1)^{k}}{2^{n}+k}}}. {\displaystyle -\psi (1)=\sum _{n=1}^{\infty }\sum _{k=0}^{\infty }{\frac {(-1)^{k}}{2^{n}+k}}}

sum[n=1 až ∞]|sum[k=0 až ∞]{((-1)^k)/(2^n+k)}

?

A001620

[0;1,1,2,1,2,1,4,3,13,5,1,1,8,1,2,...]

0.60459978807807261686469275254738524

Dirichletova řada

π 3 3 {\displaystyle {\frac {\pi }{3{\sqrt {3}}}}} {\displaystyle {\frac {\pi }{3{\sqrt {3}}}}}

∑ n = 1 ∞ 1 n ( 2 n n ) = 1 - 1 2 + 1 4 - 1 5 + 1 7 - 1 8 + {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n{2n \choose n}}}=1-{\frac {1}{2}}+{\frac {1}{4}}-{\frac {1}{5}}+{\frac {1}{7}}-{\frac {1}{8}}+\cdots } {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n{2n \choose n}}}=1-{\frac {1}{2}}+{\frac {1}{4}}-{\frac {1}{5}}+{\frac {1}{7}}-{\frac {1}{8}}+\cdots }

Součet[1/(n Binom[2 n, n]), {n, 1, ∞}]

T

A073010

[0;1,1,1,1,8,10,2,2,3,3,1,9,2,5,4,1,27,27,...]

0.63661977236758134307553505349005745

2/Pi, François Viète

2 π {\displaystyle {\frac {2}{\pi }}} {\displaystyle {\frac {2}{\pi }}}

2 2 2 + 2 2 2 + 2 + 2 2 {\displaystyle {\frac {\sqrt {2}}{2}}\cdot {\frac {\sqrt {2+{\sqrt {2}}}}{2}}\cdot {\frac {\sqrt {2+{\sqrt {2+{\sqrt {2}}}}}}{2}}\cdots } {\displaystyle {\frac {\sqrt {2}}{2}}\cdot {\frac {\sqrt {2+{\sqrt {2}}}}{2}}\cdot {\frac {\sqrt {2+{\sqrt {2+{\sqrt {2}}}}}}{2}}\cdots }

T

A060294

[0;1,1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,...]

0.66016181584686957392781211001455577

Dvojitá primární konstanta

C 2 {\displaystyle C_{2}} {\displaystyle C_{2}}

∏ p = 3 ∞ p ( p - 2 ) ( p - 1 ) 2 {\displaystyle \prod _{p=3}^{\infty }{\frac {p(p-2)}{(p-1)^{2}}}} {\displaystyle \prod _{p=3}^{\infty }{\frac {p(p-2)}{(p-1)^{2}}}}

prod[p=3 až ∞]{p(p-2)/(p-1)^2

A005597

[0;1,1,1,16,2,2,2,2,1,18,2,2,11,1,1,2,4,1,...]

0.66274341934918158097474209710925290

Laplaceova limitní konstanta

λ {\displaystyle \lambda } {\displaystyle \lambda }

A033259

[0;1,1,1,27,1,1,1,8,2,154,2,4,1,5,...]

0.69314718055994530941723212145817657

Logaritmus de 2

L n ( 2 ) {\displaystyle Ln(2)} {\displaystyle Ln(2)}

∑ n = 1 ∞ ( - 1 ) n + 1 n = 1 1 - 1 2 + 1 3 - 1 4 + 1 5 - {\displaystyle \sum _{n=1}^{\infty }{\frac {(-)1)^{n+1}}{n}}={\frac {1}{1}}-{\frac {1}{2}}+{\frac {1}{3}}-{\frac {1}{4}}+{\frac {1}{5}}-\cdots } {\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}={\frac {1}{1}}-{\frac {1}{2}}+{\frac {1}{3}}-{\frac {1}{4}}+{\frac {1}{5}}-\cdots }

Součet[n=1 až ∞]{(-1)^(n+1)/n}

T

A002162

[0;1,2,3,1,6,3,1,1,2,1,1,1,1,3,10,...]

0.78343051071213440705926438652697546

Sen druhého ročníku1 J.Bernoulli

I 1 {\displaystyle I_{1}} {\displaystyle I_{1}}

∑ n = 1 ∞ ( - 1 ) n + 1 n n = 1 - 1 2 2 + 1 3 3 - 1 4 4 + 1 5 5 + ... {\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n^{n}}}=1-{\frac {1}{2^{2}}}+{\frac {1}{3^{3}}}-{\frac {1}{4^{4}}}+{\frac {1}{5^{5}}}+\dots } {\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n^{n}}}=1-{\frac {1}{2^{2}}}+{\frac {1}{3^{3}}}-{\frac {1}{4^{4}}}+{\frac {1}{5^{5}}}+\dots }

Součet[ -(-1)^n /n^n]

T

A083648

[0;1,3,1,1,1,1,1,1,2,4,7,2,1,2,1,1,1,...]

0.78539816339744830961566084581987572

Dirichletova beta(1)

β ( 1 ) {\displaystyle \beta (1)} {\displaystyle \beta (1)}

π 4 = ∑ n = 0 ∞ ( - 1 ) n 2 n + 1 = 1 1 - 1 3 + 1 5 - 1 7 + 1 9 - {\displaystyle {\frac {\pi }{4}}=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{2n+1}}={\frac {1}{1}}-{\frac {1}{3}}+{\frac {1}{5}}-{\frac {1}{7}}+{\frac {1}{9}}-\cdots } {\displaystyle {\frac {\pi }{4}}=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{2n+1}}={\frac {1}{1}}-{\frac {1}{3}}+{\frac {1}{5}}-{\frac {1}{7}}+{\frac {1}{9}}-\cdots }

Součet[n=0 až ∞]{(-1)^n/(2n+1)}

T

A003881

[0; 1,3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,...]

0.82246703342411321823620758332301259

Obchodní cestující Nielsen-Ramanujan

ζ ( 2 ) 2 {\displaystyle {\frac {\zeta (2)}{2}} {\displaystyle {\frac {\zeta (2)}{2}}}

π 2 12 = ∑ n = 1 ∞ ( - 1 ) n + 1 n 2 = 1 1 2 - 1 2 2 + 1 3 2 - 1 4 2 + 1 5 2 - ... {\displaystyle {\frac {\pi ^{2}}{12}}=\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n^{2}}}={\frac {1}{1^{2}}}{-}{\frac {1}{2^{2}}}{+}{\frac {1}{3^{2}}}{-}{\frac {1}{4^{2}}}{+}{\frac {1}{5^{2}}}-\dots } {\displaystyle {\frac {\pi ^{2}}{12}}=\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n^{2}}}={\frac {1}{1^{2}}}{-}{\frac {1}{2^{2}}}{+}{\frac {1}{3^{2}}}{-}{\frac {1}{4^{2}}}{+}{\frac {1}{5^{2}}}-\dots }

Součet[n=1 až ∞]{((-1)^(k+1))/n^2}

T

A072691

[0;1,4,1,1,1,2,1,1,1,1,3,2,2,4,1,1,1,...]

0.91596559417721901505460351493238411

Katalánská konstanta

C {\displaystyle C} {\displaystyle C}

∑ n = 0 ∞ ( - 1 ) n ( 2 n + 1 ) 2 = 1 1 2 - 1 3 2 + 1 5 2 - 1 7 2 + {\displaystyle \sum _{n=0}^{\infty }{\frac {(-)1)^{n}}{(2n+1)^{2}}}={\frac {1}{1^{2}}}-{\frac {1}{3^{2}}}+{\frac {1}{5^{2}}}-{\frac {1}{7^{2}}}+\cdots } {\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)^{2}}}={\frac {1}{1^{2}}}-{\frac {1}{3^{2}}}+{\frac {1}{5^{2}}}-{\frac {1}{7^{2}}}+\cdots }

Součet[n=0 až ∞]{(-1)^n/(2n+1)^2}

I

A006752

[0;1,10,1,8,1,88,4,1,1,7,22,1,2,...]

1.05946309435929526456182529494634170

Poměr vzdálenosti mezi půltóny

2 12 {\displaystyle {\sqrt[{12}]{2}}} {\displaystyle {\sqrt[{12}]{2}}}

2 12 {\displaystyle {\sqrt[{12}]{2}}} {\displaystyle {\sqrt[{12}]{2}}}

2^(1/12)

I

A010774

[1;16,1,4,2,7,1,1,2,2,7,4,1,2,1,60,1,3,1,2,...]

1,.08232323371113819151600369654116790

Zeta(04)

ζ 4 {\displaystyle \zeta {4}} {\displaystyle \zeta {4}}

π 4 90 = ∑ n = 1 ∞ 1 n 4 = 1 1 4 + 1 2 4 + 1 3 4 + 1 4 4 + 1 5 4 + ... {\displaystyle {\frac {\pi ^{4}}{90}}=\sum _{n=1}^{\infty }{\frac {1}{n^{4}}}={\frac {1}{1^{4}}}+{\frac {1}{2^{4}}}+{\frac {1}{3^{4}}}+{\frac {1}{4^{4}}}+{\frac {1}{5^{4}}}+\dots } {\displaystyle {\frac {\pi ^{4}}{90}}=\sum _{n=1}^{\infty }{\frac {1}{n^{4}}}={\frac {1}{1^{4}}}+{\frac {1}{2^{4}}}+{\frac {1}{3^{4}}}+{\frac {1}{4^{4}}}+{\frac {1}{5^{4}}}+\dots }

Součet[n=1 až ∞]{1/n^4}

T

A013662

[1;12,6,1,3,1,4,183,1,1,2,1,3,1,1,5,4,2,7,...]

1.1319882487943 ...

Viswanaths konstantní

C V i {\displaystyle C_{Vi}} {\displaystyle C_{Vi}}

lim n → ∞ | a n | 1 n {\displaystyle \lim _{n\to \infty }|a_{n}|^{\frac {1}{n}}}} {\displaystyle \lim _{n\to \infty }|a_{n}|^{\frac {1}{n}}}

A078416

[1;7,1,1,2,1,3,2,1,2,1,8,1,5,1,1,1,9,1,...]

1.20205690315959428539973816151144999

Apéry konstantní

ζ ( 3 ) {\displaystyle \zeta (3)} {\displaystyle \zeta (3)}

∑ n = 1 ∞ 1 n 3 = 1 1 3 + 1 2 3 + 1 3 3 + 1 4 3 + 1 5 3 + {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{3}}}={\frac {1}{1^{3}}}+{\frac {1}{2^{3}}}+{\frac {1}{3^{3}}}+{\frac {1}{4^{3}}}+{\frac {1}{5^{3}}}+\cdots \,\! } {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{3}}}={\frac {1}{1^{3}}}+{\frac {1}{2^{3}}}+{\frac {1}{3^{3}}}+{\frac {1}{4^{3}}}+{\frac {1}{5^{3}}}+\cdots \,\!}

Součet[n=1 až ∞]{1/n^3}

I

A010774

[1;4,1,18,1,1,1,4,1,9,9,2,1,1,1,2,...]

1.22541670246517764512909830336289053

Gama(3/4)

Γ ( 3 4 ) {\displaystyle \Gamma ({\tfrac {3}{4}})} {\displaystyle \Gamma ({\tfrac {3}{4}})}

( - 1 + 3 4 ) ! {\displaystyle \left(-1+{\frac {3}{4}}\right)! } {\displaystyle \left(-1+{\frac {3}{4}}\right)!}

(-1+3/4)!

T

A068465

[1;4,2,3,2,2,1,1,1,2,1,4,7,1,171,3,2,3,1,1,...]

1.23370055013616982735431137498451889

Favardova konstanta

3 4 ζ ( 2 ) {\displaystyle {\tfrac {3}{4}}\zeta (2)} {\displaystyle {\tfrac {3}{4}}\zeta (2)}

π 2 8 = ∑ n = 0 ∞ 1 ( 2 n - 1 ) 2 = 1 1 2 + 1 3 2 + 1 5 2 + 1 7 2 + ... {\displaystyle {\frac {\pi ^{2}}{8}}=\sum _{n=0}^{\infty }{\frac {1}{(2n-1)^{2}}}={\frac {1}{1^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{5^{2}}}+{\frac {1}{7^{2}}}+\dots } {\displaystyle {\frac {\pi ^{2}}{8}}=\sum _{n=0}^{\infty }{\frac {1}{(2n-1)^{2}}}={\frac {1}{1^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{5^{2}}}+{\frac {1}{7^{2}}}+\dots }

součet[n=1 až ∞]{1/((2n-1)^2)}

T

A111003

[1;4,3,1,1,2,2,5,1,1,1,1,2,1,2,1,10,4,3,1,1,...]

1.25992104989487316476721060727822835

Kořen krychle 2, constante Delian

2 3 {\displaystyle {\sqrt[{3}]{2}}} {\displaystyle {\sqrt[{3}]{2}}}

2 3 {\displaystyle {\sqrt[{3}]{2}}} {\displaystyle {\sqrt[{3}]{2}}}

2^(1/3)

I

A002580

[1;3,1,5,1,1,4,1,1,8,1,14,1,10,...]

1.29128599706266354040728259059560054

Sen druhého ročníku2 J.Bernoulli

I 2 {\displaystyle I_{2}} {\displaystyle I_{2}}

∑ n = 1 ∞ 1 n n = 1 + 1 2 2 + 1 3 3 + 1 4 4 + 1 5 5 + 1 6 6 + ... {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{n}}}=1+{\frac {1}{2^{2}}}+{\frac {1}{3^{3}}}+{\frac {1}{4^{4}}}}+{\frac {1}{5^{5}}}+{\frac {1}{6^{6}}}+\dots } {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{n}}}=1+{\frac {1}{2^{2}}}+{\frac {1}{3^{3}}}+{\frac {1}{4^{4}}}+{\frac {1}{5^{5}}}+{\frac {1}{6^{6}}}+\dots }

Součet[1/(n^n]), {n, 1, ∞}]

A073009

[1;3,2,3,4,3,1,2,1,1,6,7,2,5,3,1,2,1,8,1,...]

1.32471795724474602596090885447809734

Plastové číslo

ρ {\displaystyle \rho } {\displaystyle \rho }

1 + 1 + 1 + 1 + 3 3 3 3 {\displaystyle {\sqrt[{3}]{1+{\sqrt[{3}]{1+{\sqrt[{3}]{1+{\sqrt[{3}]{1+\cdots }}}}}}}}} {\displaystyle {\sqrt[{3}]{1+{\sqrt[{3}]{1+{\sqrt[{3}]{1+{\sqrt[{3}]{1+\cdots }}}}}}}}}

I

A060006

[1;3,12,1,1,3,2,3,2,4,2,141,80,2,5,1,2,8,...]

1.41421356237309504880168872420969808

Druhá odmocnina ze 2, Pythagorova konstanta

2 {\displaystyle {\sqrt {2}}} {\displaystyle {\sqrt {2}}}

∏ n = 1 ∞ 1 + ( - 1 ) n + 1 2 n - 1 = ( 1 + 1 1 ) ( 1 - 1 3 ) ( 1 + 1 5 ) . . . {\displaystyle \prod _{n=1}^{\infty }1+{\frac {(-1)^{n+1}}{2n-1}}=\levá(1{+}{\frac {1}{1}}}pravá)\levá(1{-}{\frac {1}{3}}}pravá)\levá(1{+}{\frac {1}{5}}}pravá)... } {\displaystyle \prod _{n=1}^{\infty }1+{\frac {(-1)^{n+1}}{2n-1}}=\left(1{+}{\frac {1}{1}}\right)\left(1{-}{\frac {1}{3}}\right)\left(1{+}{\frac {1}{5}}\right)...}

prod[n=1 až ∞]{1+(-1)^(n+1)/(2n-1)}

I

A002193

[1;2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,...]
= [1;(2),...]

1.44466786100976613365833910859643022

Steinerovo číslo

e 1 e {\displaystyle e^{\frac {1}{e}}} {\displaystyle e^{\frac {1}{e}}}

e 1 / e {\displaystyle e^{1/e}} {\displaystyle e^{1/e}}... Horní mez tetrace

A073229

[1;2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...]

1.53960071783900203869106341467188655

Lieb's Square Ice constant

W 2 D {\displaystyle W_{2D}} {\displaystyle W_{2D}}

lim n → ∞ ( f ( n ) ) n - 2 = ( 4 3 ) 3 2 {\displaystyle \lim _{n\to \infty }(f(n))^{n^{-2}}=\left({\frac {4}{3}}\right)^{\frac {3}{2}}}} {\displaystyle \lim _{n\to \infty }(f(n))^{n^{-2}}=\left({\frac {4}{3}}\right)^{\frac {3}{2}}}

(4/3)^(3/2)

I

A118273

[1;1,1,5,1,4,2,1,6,1,6,1,2,4,1,5,1,1,2,...]

1.57079632679489661923132169163975144

Výrobek Wallis

π / 2 {\displaystyle \pi /2} {\displaystyle \pi /2}

∏ n = 1 ∞ ( 4 n 2 4 n 2 - 1 ) = 2 1 2 3 4 3 4 5 6 5 6 7 8 7 8 9 {\displaystyle \prod _{n=1}^{\infty }\left({\frac {4n^{2}}{4n^{2}-1}}\pravo)={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot {\frac {8}{7}}\cdot {\frac {8}{9}}\cdots } {\displaystyle \prod _{n=1}^{\infty }\left({\frac {4n^{2}}{4n^{2}-1}}\right)={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot {\frac {8}{7}}\cdot {\frac {8}{9}}\cdots }

T

A019669

[1;1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1...]

1.60669515241529176378330152319092458

Erdősova-Borweinova konstanta

E B {\displaystyle E_{\,B}} {\displaystyle E_{\,B}}

∑ n = 1 ∞ 1 2 n - 1 = 1 1 + 1 3 + 1 7 + 1 15 + {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{2^{n}-1}}={\frac {1}{1}}+{\frac {1}{3}}+{\frac {1}{7}}+{\frac {1}{15}}+\cdots \,\! } {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{2^{n}-1}}={\frac {1}{1}}+{\frac {1}{3}}+{\frac {1}{7}}+{\frac {1}{15}}+\cdots \,\!}

sum[n=1 až ∞]{1/(2^n-1)}

I

A065442

[1;1,1,1,1,5,2,1,2,29,4,1,2,2,2,2,6,1,7,1,...]

1.61803398874989484820458633436563812

Phi, zlatý řez

φ {\displaystyle \varphi } {\displaystyle \varphi }

1 + 5 2 = 1 + 1 + 1 + 1 + {\displaystyle {\frac {1+{\sqrt {5}}}{2}}={\sqrt {1+{\sqrt {1+{\sqrt {1+{\sqrt {1+\cdots }}}}}}}}} {\displaystyle {\frac {1+{\sqrt {5}}}{2}}={\sqrt {1+{\sqrt {1+{\sqrt {1+{\sqrt {1+\cdots }}}}}}}}}

(1+5^(1/2))/2

I

A001622

[0;1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...]
= [0;(1),...]

1.64493406684822643647241516664602519

Zeta(2)

ζ ( 2 ) {\displaystyle \zeta (\,2)} {\displaystyle \zeta (\,2)}

π 2 6 = ∑ n = 1 ∞ 1 n 2 = 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + {\displaystyle {\frac {\pi ^{2}}{6}}=\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{4^{2}}}+\cdots } {\displaystyle {\frac {\pi ^{2}}{6}}=\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{4^{2}}}+\cdots }

Součet[n=1 až ∞]{1/n^2}

T

A013661

[1;1,1,1,4,2,4,7,1,4,2,3,4,10 1,2,1,1,1,15,...]

1.66168794963359412129581892274995074

Somosova kvadratická konstanta opakování

σ {\displaystyle \sigma } {\displaystyle \sigma }

1 2 3 = 1 1 / 2 ; 2 1 / 4 ; 3 1 / 8 {\displaystyle {\sqrt {1{\sqrt {2{\sqrt {3\cdots }}}}}}=1^{1/2};2^{1/4};3^{1/8}\cdots } {\displaystyle {\sqrt {1{\sqrt {2{\sqrt {3\cdots }}}}}}=1^{1/2};2^{1/4};3^{1/8}\cdots }

T

A065481

[1;1,1,1,21,1,1,1,6,4,2,1,1,2,1,3,1,13,13,...]

1.73205080756887729352744634150587237

Theodorus konstanta

3 {\displaystyle {\sqrt {3}}} {\displaystyle {\sqrt {3}}}

3 {\displaystyle {\sqrt {3}}} {\displaystyle {\sqrt {3}}}

3^(1/2)

I

A002194

[1;1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,...]
= [1;(1,2),...]

1.75793275661800453270881963821813852

Kasnerovo číslo

R {\displaystyle R} {\displaystyle R}

1 + 2 + 3 + 4 + {\displaystyle {\sqrt {1+{\sqrt {2+{\sqrt {3+{\sqrt {4+\cdots }}}}}}}}} {\displaystyle {\sqrt {1+{\sqrt {2+{\sqrt {3+{\sqrt {4+\cdots }}}}}}}}}

A072449

[1;1,3,7,1,1,1,2,3,1,4,1,1,2,1,2,20,1,2,2,...]

1.77245385090551602729816748334114518

Carlson-Levin konstanta

Γ ( 1 2 ) {\displaystyle \Gamma ({\tfrac {1}{2}})} {\displaystyle \Gamma ({\tfrac {1}{2}})}

π = ( - 1 2 ) ! {\displaystyle {\sqrt {\pi }}=\left(-{\frac {1}{2}}}\right)! } {\displaystyle {\sqrt {\pi }}=\left(-{\frac {1}{2}}\right)!}

sqrt (pí)

T

A002161

[1;1,3,2,1,1,6,1,28,13,1,1,2,18,1,1,1,83,1,...]

2.29558714939263807403429804918949038

Univerzální parabolická konstanta

P 2 {\displaystyle P_{\,2}} {\displaystyle P_{\,2}}

ln ( 1 + 2 ) + 2 {\displaystyle \ln(1+{\sqrt {2}})+{\sqrt {2}} {\displaystyle \ln(1+{\sqrt {2}})+{\sqrt {2}}}

ln(1+sqrt 2)+sqrt 2

T

A103710

[2;3,2,1,1,1,1,3,3,1,1,4,2,3,2,7,1,6,1,8,...]

2.30277563773199464655961063373524797

Bronzové číslo

σ R r {\displaystyle \sigma _{\,Rr}} {\displaystyle \sigma _{\,Rr}}

3 + 13 2 = 1 + 3 + 3 + 3 + 3 + {\displaystyle {\frac {3+{\sqrt {13}}}{2}}=1+{\sqrt {3+{\sqrt {3+{\sqrt {3+{\sqrt {3+\cdots }}}}}}}}} {\displaystyle {\frac {3+{\sqrt {13}}}{2}}=1+{\sqrt {3+{\sqrt {3+{\sqrt {3+{\sqrt {3+\cdots }}}}}}}}}

(3+sqrt 13)/2

I

A098316

[3;3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,...]
= [3;(3),...]

2.37313822083125090564344595189447424

Lévyho konstanta 2

2 ln γ {\displaystyle 2\,\ln \,\gamma } {\displaystyle 2\,\ln \,\gamma }

π 2 6 ln ( 2 ) {\displaystyle {\frac {\pi ^{2}}{6\ln(2)}}} {\displaystyle {\frac {\pi ^{2}}{6\ln(2)}}}

Pi^(2)/(6*ln(2))

T

A174606

[2;2,1,2,8,57,9,32,1,1,2,1,2,1,2,1,2,1,3,2,...]

2.50662827463100050241576528481104525

odmocnina z 2 pí

2 π {\displaystyle {\sqrt {2\pi }}} {\displaystyle {\sqrt {2\pi }}}

2 π = lim n → ∞ n ! e n n n n {\displaystyle {\sqrt {2\pi }}=\lim _{n\to \infty }{\frac {n!\;e^{n}}{n^{n}{\sqrt {n}}}}} {\displaystyle {\sqrt {2\pi }}=\lim _{n\to \infty }{\frac {n!\;e^{n}}{n^{n}{\sqrt {n}}}}}

sqrt (2*pi)

T

A019727

[2;1,1,37,4,1,1,1,1,9,1,1,2,8,6,1,2,2,1,3,...]

2.66514414269022518865029724987313985

Gelfond-Schneiderova konstanta

G G S {\displaystyle G_{_{\,GS}}} {\displaystyle G_{_{\,GS}}}

2 2 {\displaystyle 2^{\sqrt {2}}} {\displaystyle 2^{\sqrt {2}}}

2^sqrt{2}

T

A007507

[2;1,1,1,72,3,4,1,3,2,1,1,1,14,1,2,1,1,3,1,...]

2.68545200106530644530971483548179569

Khintchin konstanta

K 0 {\displaystyle K_{\,0}} {\displaystyle K_{\,0}}

∏ n = 1 ∞ [ 1 + 1 n ( n + 2 ) ] ln n / ln 2 {\displaystyle \prod _{n=1}^{\infty }\left[{1+{1 \over n(n+2)}}}\right]^{\ln n/\ln 2}} {\displaystyle \prod _{n=1}^{\infty }\left[{1+{1 \over n(n+2)}}\right]^{\ln n/\ln 2}}

prod[n=1 až ∞]{(1+1/(n(n+2)))^((ln(n)/ln(2))}

?

A002210

[2;1,2,5,1,1,2,1,1,3,10,2,1,3,2,24,1,3,2,...]

3.27582291872181115978768188245384386

Khinchin-Lévyho konstanta

γ {\displaystyle \gamma } {\displaystyle \gamma }

e π 2 / ( 12 ln 2 ) {\displaystyle e^{\pi ^{2}/(12\ln 2)}} {\displaystyle e^{\pi ^{2}/(12\ln 2)}}

e^(\pi^2/(12 ln(2))

A086702

[3;3,1,1,1,2,29,1,130,1,12,3,8,2,4,1,3,55,...]

3.35988566624317755317201130291892717

Reciproční Fibonacciho konstanta

Ψ {\displaystyle \Psi } {\displaystyle \Psi }

∑ n = 1 ∞ 1 F n = 1 1 + 1 1 + 1 2 + 1 3 + 1 5 + 1 8 + 1 13 + {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{F_{n}}={\frac {1}{1}}+{\frac {1}{1}}+{\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{5}}+{\frac {1}{8}}+{\frac {1}{13}}+\cdots } {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{F_{n}}}={\frac {1}{1}}+{\frac {1}{1}}+{\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{5}}+{\frac {1}{8}}+{\frac {1}{13}}+\cdots }

A079586

[3;2,1,3,1,1,13,2,3,3,2,1,1,6,3,2,4,362,...]

4.13273135412249293846939188429985264

Kořen 2 e pí

2 e π {\displaystyle {\sqrt {2e\pi }}} {\displaystyle {\sqrt {2e\pi }}}

2 e π {\displaystyle {\sqrt {2e\pi }}} {\displaystyle {\sqrt {2e\pi }}}

sqrt(2e pí)

T

A019633

[4;7,1,1,6,1,5,1,1,1,8,3,1,2,2,15,2,1,1,2,4,...]

6.58088599101792097085154240388648649

Froda konstantní

2 e {\displaystyle 2^{\,e}} {\displaystyle 2^{\,e}}

2 e {\displaystyle 2^{e}} {\displaystyle 2^{e}}

2^e

[6;1,1,2,1,1,2,3,1,14,11,4,3,1,1,7,5,5,2,7,...]

9.86960440108935861883449099987615114

Pí čtverec

π 2 {\displaystyle \pi ^{2}} {\displaystyle \pi ^{2}}

6 ∑ n = 1 ∞ 1 n 2 = 6 1 2 + 6 2 2 + 6 3 2 + 6 4 2 + {\displaystyle 6\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {6}{1^{2}}}}+{\frac {6}{2^{2}}}+{\frac {6}{3^{2}}}}+{\frac {6}{4^{2}}}+\cdots } {\displaystyle 6\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {6}{1^{2}}}+{\frac {6}{2^{2}}}+{\frac {6}{3^{2}}}+{\frac {6}{4^{2}}}+\cdots }

6 Součet[n=1 až ∞]{1/n^2}

T

A002388

[9;1,6,1,2,47,1,8,1,1,2,2,1,1,8,3,1,10,5,...]

23.1406926327792690057290863679485474

Gelfondova konstanta

e π {\displaystyle e^{\pi }} {\displaystyle e^{\pi }}

∑ n = 0 ∞ π n n ! = π 1 1 + π 2 2 ! + π 3 3 ! + π 4 4 ! + {\displaystyle \sum _{n=0}^{\infty }{\frac {\pi ^{n}}{n!}}={\frac {\pi ^{1}}{1}}+{\frac {\pi ^{2}}{2!}}+{\frac {\pi ^{3}}{3!}}+{\frac {\pi ^{4}}{4!}}+\cdots } {\displaystyle \sum _{n=0}^{\infty }{\frac {\pi ^{n}}{n!}}={\frac {\pi ^{1}}{1}}+{\frac {\pi ^{2}}{2!}}+{\frac {\pi ^{3}}{3!}}+{\frac {\pi ^{4}}{4!}}+\cdots }

Součet[n=0 až ∞]{(pi^n)/n!}

T

A039661

[23;7,9,3,1,1,591,2,9,1,2,34,1,16,1,30,1,...]

 

Související stránky

 

Online bibliografie

  • On-line encyklopedie celých posloupností (OEIS)
  • Simon Plouffe, Tabulky konstant
  • Stránka čísel, matematických konstant a algoritmů Xaviera Gourdona a Pascala Sebaha
  • MathConstants
 

Otázky a odpovědi

Otázka: Co je to matematická konstanta?


Odpověď: Matematická konstanta je číslo, které má zvláštní význam pro výpočty.

Otázka: Jaký je příklad matematické konstanty?


Odpověď: Příkladem matematické konstanty je ً, která představuje poměr obvodu kruhu k jeho průměru.

Otázka: Je hodnota ً vždy stejná?


Odpověď: Ano, hodnota ً je pro každou kružnici vždy stejná.

Otázka: Jsou matematické konstanty integrální čísla?


Odpověď: Ne, matematické konstanty jsou obvykle reálná neintegrální čísla.

Otázka: Odkud se berou matematické konstanty?


Odpověď: Matematické konstanty nepocházejí z fyzikálních měření jako fyzikální konstanty.

AlegsaOnline.com - 2020 / 2023 - License CC3